Luminescence of Mn²⁺ in SrGa₁₂O₁₉, LaMgGa₁₁O₁₉, and BaGa₁₂O₁₉

J. M. P. J. VERSTEGEN

N.V. Philips' Gloeilampenfabrieken, Eindhoven, The Netherlands

Received October 31, 1972

Lattice parameters are given of SrGa₁₂O₁₉, BaGa₁₂O₁₉, and LaMgGa₁₁O₁₉, three new gallates with the magnetoplumbite structure. The luminescence of the compounds without and with activation by Mn²⁺ is reported. The quantum efficiencies of the Mn^{2+} phosphors are between 15% (BaGa₁₂O₁₉:Mn) and 70% ({Sr_{1-x}La_x}Ga_{12-x}Mg_xO₁₉:Mn). The emission strongly resembles that of Mn²⁺ in MgGa₂O₄. The fine structure of the Mn²⁺ emission band at 77°K is due to phonon coupling.

Introduction

Cathodoluminescence of Mn²⁺-activated aluminates is a familiar phenomenon reported by Kröger in respect of MgAl₂O₄, ZnAl₂O₄, MO·6 Al₂O₃ (M = Ca, Sr, Ba), and A₂O·11 Al_2O_3 (A = Na, K) (1). Substitution of Ga for Al in the spinels (MgAl₂O₄, ZnAl₂O₄) causes the Mn²⁺ phosphors to luminesce under 254 nm radiation (2, 3). The present work deals with the Ga derivatives having the magnetoplumbite structure (MO \cdot 6 Al₂O₃), leading to three new compounds that, after activation with Mn²⁺, showed narrow band green luminescence, strongly resembling that of Mn^{2+} in the spinels $MgGa_2O_4$ and $ZnGa_2O_4$.

Experimental

Phosphors were fired in stoichiometric proportions, the components being luminescent grade CaCO₃, SrCO₃, BaCO₃, McCO₃, and MgO. La₂O₃ was obtained from Péchiney, and 3n Ga₂O₃ from Alusuisse. Host lattice formation was achieved after $2 \times 2h$ at 1400°C and checked with X-ray diagrams. Reduction of Mn was carried out at 1300°C in N2 with a few percent of H_2 . The amount of Mn ranged between 0.1 and 2 at. %. Unless otherwise stated, the results presented here were obtained from samples with 0.3-0.4 at. %, which showed highest efficiency. The performance of the standard optical measurements was described previously (4). It was difficult to measure reliable excitation spectra in the

region 200-300 nm, owing to slow buildup of the luminescence. Increasing the excitation intensity helped to overcome this. Mn²⁺ excitation bands at wavelengths ≥ 400 nm were obtained with a Hitachi grating IR spectrophotometer, using KBr and CsBr pellets and paraffin, for the frequency regions of, respectively, 4000-400, 700-200, and 200-70 cm⁻¹.

Results and Discussion

Crystal Structure of the Host Lattices

The unit cells of the hexagonal magnetoplumbite contain spinel blocks, which form plates perpendicular to the threefold axis. The plates are connected by layers of deviating structure, containing the large positive ions (5). It is assumed that Mn^{2+} ($r_{Mn} \approx 0.80$ Å) replaces Ga³⁺ ($r_{Ga} \approx 0.62$ Å) or Mg²⁺ ($r_{Mg} \approx 0.66$ Å) rather than the large cations $(1.02 \le r \le 1.34)$ Å). Per unit cell there are 18 octahedral, 4 tetrahedral, and 2 pentahedral sites occupied by Fe (6) or, in our case, Ga. In the section on luminescence evidence will be presented that Mn²⁺ occupies a tetrahedral site. The X-ray powder diagrams of (SrGa), (BaGa), and (LaMg)Ga11O19 were indexed and the lattice parameters calculated. In Table I the results are summarized and compared with those for various magnetoplumbites obtained by Adelskjöld (7), Townes et al. (6) and Kato and Saalfeld (8).

SrGa12O19 and LaMgGa11O19 form solid

Lattice	а	с	Probable space group	Ref.
CaAl ₁₂ O ₁₉	5.564 ± 0.002	21.892 ± 0.005	P6 ₃ /mmc	8
SrAl12O19	5.557	21.945		7
BaAl12O19	5.577	22.67		7
$SrFe_{12}O_{19}$	5.846	23.03		7
BaFe ₁₂ O ₁₉	5.893	23.194		6
$PbFe_{12}O_{19}$	5.877	23.02	P63/mmc	7
SrGa12O19	5.796 ± 0.004	$\textbf{22.84} \pm \textbf{0.02}$	$P6_3/mmc$	1
BaGa12O19	5.850 ± 0.004	$\textbf{23.77} \pm \textbf{0.02}$?	This worl
LaMgGa11O19	5.799 ± 0.003	22.71 ± 0.01	P6 ₃ /mmc	

TABLE I

LATTICE PARAMETERS AND PROBABLE SPACE GROUP OF VARIOUS MAGNETOPLUMBITES

solutions throughout the whole concentration range. There is extensive solubility of $BaGa_{12}O_{10}$ in $SrGa_{12}O_{19}$, but at Ba > 0.8, phase separation occurs. All gallates show reflections (h, h, l) with $h \neq 0$ only when l = 2n. Reflections (0,0,l) of BaGa₁₂O₁₉ appear also with some values of l = odd, those of SrGa₁₂O₁₉ and LaMgGa₁₁O₁₉ only with l = 2n. The spatial arrangement of the atoms in the BaGa12O19 unit cell seems to differ from that in the other gallates. We could not synthesize $CaGa_{12}O_{19}$. The corresponding aluminate exists, the ferrite $CaFe_{12}O_{19}$ does not (7). Apparently, Ca is too small to stabilize a lattice with relatively large tervalent cations such as Ga and Fe. We did, however, synthesize a magnetoplumbite with the composition CaAl₆ Ga_6O_{19} .

Luminescence

The Host Lattices

Throughout this paper mixed crystals of $SrGa_{12}O_{19}$ and $LaMgGa_{11}O_{19}$ play an important role. For convenience we introduce the following abbreviations: Sr, Sr_{0.75}La_{0.25}, Sr_{0.50}La_{0.50}, Sr_{0.25}La_{0.75}, La, and Ba for SrGa₁₂O₁₉, Sr_{0.75} $La_{0.25}Mg_{0.25}Ga_{11.75}O_{19}$ Sr_{0.50}La_{0.50}Mg_{0.50} $Ga_{11,50}O_{19}$, $Sr_{0.25}La_{0.75}Mg_{0.75}Ga_{11.25}O_{19}$ LaMgGa₁₁O₁₉, and BaGa₁₂O₁₉, respectively. Figure 1 shows diffuse reflection curves of Sr, $Sr_{0.75}La_{0.25}$, $Sr_{0.50}La_{0.50}$, and La. Two effects are noteworthy. (i) The absorption edge shifts to shorter wavelengths when LaMg replaces SrGa; and (ii) the absorption edge of Sr is notably steeper and is crossed over by that of Sr_{0.75}La_{0.25}, Sr_{0.50}La_{0.50}, and La. The non-

FIG. 1. Diffuse reflection spectra of Sr (drawn curve), $Sr_{0.75}La_{0.25}$ (crossed curve), $Sr_{0.50}La_{0.50}$ (dotted curve), and La (dashed—dotted curve.)

activated host lattices luminesce weakly at room temperature but relatively strong at 77°K. Relevant data concerning the host lattice absorption and emission are shown in Table II.

Activation with Mn²⁺

Figure 2 shows the excitation $(Mn^{2+} \text{ emission})$ and diffuse reflection spectra of Sr, Sr_{0.75}La_{0.25}, La, and Ba, activated with Mn^{2+} . The spectra of Sr_{0.50}La_{0.50}, which do not deviate from the pattern, have been omitted for clarity. Excitation bands of Mn^{2+} in BaGa₁₂O₁₉ and SrGa₁₂O₁₉ between 350 and 500 nm are given in Table III. They are assigned and complemented with those given by Palumbo for MgGa₂O₄:Mn (9).

The ${}^{4}T_{1g}$ level in all our phosphors was obscured by the emission band. This points to a Stokes shift of ≤ 20 nm (800 cm⁻¹), comparable

Data of the Host Lattice Absorption and Emission in Nonactivated and Mn^{2+} -Activated Gallates						
	Nonactivated host lattices		Mn ²⁺ -activated host lattices		ces	
Host lattices	Abs. edge at 300°K (cm ⁻¹) ^a	Emission max. at 77°K (cm ⁻¹)	Т ₅₀ ^ь (°К)	Abs. edge at 300°K (cm ⁻¹) ^a	Emission max. at 77°K (cm ⁻¹)	Т ₅₀ ^ь (°К)
Sr	37.400	22.170	200	36.950	21.880	145

220

250

265

37.450

38.200

38.800

ΤA	BL	Æ	Π
		~	

^a Value at 10% reflection.

Sr0.75 La0.25

Sr0.50 La0.50

La

 b T₅₀ is the temperature in $^{\circ}$ K at which 50% of the maximum brightness has been quenched.

22.270

23.310

23.590

to that in ZnS and ZnSe:Mn (10, 11). From the data in Table III, v. Gorkom of Philips Research Laboratories calculated a crystal field parameter Dq of about 520 cm⁻¹, equal to that found by Palumbo for MgGa₂O₄:Mn (9). The close similarity of the Mn²⁺ excitation bands in the spinel and magnetoplumbites strongly points to a similar site symmetry of Mn²⁺ in both structures. This rules out the pentahedral site as being occupied by manganese in the magnetoplumbites; these sites would also show a completely different

38.180

38.940

39,600

splitting of the Mn^{2+} ⁴G level. The order of magnitude of Dq indicates tetrahedral surrounding of the Mn^{2+} ion. This was confirmed by measurements of the decay of the Mn^{2+} emission. We found 5 msec close to the calculated value of 2–3 msec in a tetrahedral field (12), a value corresponding to measurements with ZnS:Mn (13). The decay of the emission of octahedrally surrounded Mn^{2+} is in general 15–20 msec.

22.080

22.320

24.510

210

250

270

Figure 3 shows the emission curves of Sr:Mn with various Mn^{2+} concentrations at 77°K.

TABLE III

Position and Assignment of Excitation Bands of Mn^{2+} in Magnetoplumbites and MgGa₂O₄. "—" Means: Not Looked For

		Position					
		at	77°K	at 3	00°K	_	
Lattice Assignment	(nm)	(cm ⁻¹)	(nm)	(cm ⁻¹)	- Ref.		
<u> </u>	${}^{4}T_{1a}({}^{4}G)$	Not c	observed	Not o	bserved		
	${}^{4}T_{2q}^{(4)}({}^{4}G)$	447	22.380	447	22.370	This moule	
Sr	${}^{4}E_{g} - {}^{4}A_{1g}({}^{4}G)$	425	23.560	425	23.550	I his work	
	${}^{4}T_{2g}({}^{4}D)$			—		J	
	⁴ T ₁₀ (⁴ G)	Not c	observed	Not o	bserved)	
	${}^{4}T_{2g}({}^{4}G)$	449	22.300	448	22.330	This most	
Ba	${}^{4}E_{g} - {}^{4}A_{1g}({}^{4}G)$	425	23.520	426	23.460	1 mis work	
	${}^{4}T_{2g}({}^{4}D)$		—	382	26.180)	
	${}^{4}T_{1a}({}^{4}G)$	479	20.890	_)	
	${}^{4}T_{2g}({}^{4}G)$	447	22.380				
MgGa₂O₄	${}^{4}E_{g} - {}^{4}A_{1g}({}^{4}G)$	424	23.580			1 9	
	$^{4}T_{2g}(^{4}D)$	380	26.320		<u> </u>)	

FIG. 2. Relative excitation spectra of the Mn^{2+} emission (E) and diffuse reflection spectra (R) of Sr:Mn (drawn curve), Sr_{0.75}La_{0.25}:Mn (crossed curve), La:Mn (----- curve), and Ba:Mn (----- curve).

The narrow band at 500 nm is ascribed to Mn^{2+} emission, the broad one at about 450 nm to host lattice emission. The figure is drawn in

FIG. 3. Spectral energy distribution at 77°K of Sr, activated with 0.1 at.% Mn (drawn curve), with 0.2 at.% Mn (dashed curve), with 0.5 at.% Mn (dotted curve), with 1 at.% Mn (—— curve), and with 2 at.% Mn (—— curve). I gives the radiant power per constant wavelength interval in arbitrary units. Excitation with 254 nm radiation.

TABLE IV

MAXIMUM QUANTUM EFFICIENCIES (qe_m) of the Mn²⁺ Emission and the Temperatures (T_m) in °K at Which This qe_m is Reached in Various Magnetoplumbites

Host lattice	qe_m (%)	T_m (°K)
Sr Sr	65	300
Sr _{0.75} La _{0.25}	65	330
Sr0,50 La0,50	65	360
Sr _{0.25} La _{0.75}	70	365
La	55	370
Ba	15	~300

such a way that the Mn²⁺ emission band peaks at the same height. Integration under the emission curves shows us that the total quantum efficiency remains approximately the same, but the quantum efficiency of the Mn²⁺ emission increases at the expense of that of the host lattice emission, indicating efficient energy transfer. At the optimum Mn^{2+} concentration (0.3%) the host lattice emission of Sr:Mn is quenched at 200°K. However, the Mn²⁺ emission reaches its maximum quantum efficiency at approximately 300°K. The same holds for Sr_{0.75}La_{0.25}:Mn, Sr_{0.50}La_{0.50}:Mn, Sr_{0.25}La_{0.75}:Mn, and La:Mn, but at higher temperature. Table IV gives the maximum quantum efficiencies of the Mn²⁺ emission (qe_m) and the temperature T_m at which this qe_m is reached for the various magnetoplumbites. The energy transfer in Ba:Mn was inefficient in all temperature regions.

The increase in the Mn^{2+} emission after quenching of the host lattice emission can be explained as follows. When the lattice has been excited, the excitation energy may disappear by: (i) emission of host lattice luminescence; (ii) radiationless dissipation; and (iii) transfer to another ion (14). Only (iii) may give rise to Mn^{2+} emission. At each temperature there will be equilibrium between the three processes. Apparently at low temperature (i) dominates but at high temperatures (iii), whereas (ii) remains small, as shown by the high quantum efficiencies of many of the phosphors.

Except for the green emission observed when Mn^{2+} is introduced, we also found a red shift Δ of the absorption edge. Δ increases when LaMg replaces SrGa and can be calculated from the values in Table II. The results are summarized in Table V.

Red Shift \varDelta of the Absorption Edge (in cm⁻¹) of Various Magnetoplumbites Owing to Activation by Mn^{2+}

Host lattice	⊿ (cm ⁻¹)	
Sr	450	
Sr _{0.75} La _{0.25}	630	
Sr _{0.50} La _{0.50}	740	
La	800	

Complete understanding of the phenomena requires work on single crystals, which we do not intend to execute. The crucial problem remains the nature of the luminescent center in the gallate host lattices. A rather rough experiment in our laboratory did not reveal any photoconduction at room temperature in Mn^{2+} activated and nonactivated Sr. However, this should not be put forward as conclusive evidence against a ZnS mechanism. We may draw attention to the fact that the narrow band green Mn^{2+} emission can efficiently be generated by sensitizers of unsuspectedly characteristic nature (15).

Fine Structure of the Mn²⁺ Emission

The Mn^{2+} emission band in Sr:Mn and Ba:Mn shows a fine structure at 77°K (Fig. 4). Shoulders (Sr) or a side band (Ba) are found on the red side of the emission bands. This fine structure cannot be attributed to splitting of the ${}^{6}A_{1}$ ground state of Mn^{2+} . A splitting of the ${}^{4}T_{1g}$ excited state, as large as 90 cm⁻¹ and more, is unlikely. Moreover, one would expect the red side of the emission band to increase in intensity when the temperature is decreased. Therefore the structure is best described as owing to coupling of the electronic transitions with

TABLE VI

Position of Main Mn^{2+} Emission and Shoulders (Side Band) at 77°K. Frequencies in cm^{-1}

Host lattice	Main line (cm ⁻¹)	Shoulders/side band
Sr	20.000	19.920 (sh), 19.570 (sh), 19.380 (sh)
Ba	20.040	19.720 (side band)

FIG. 4. Fine structure of the Mn^{2+} emission band at 77°K in Ba:Mn (drawn curve) and Sr:Mn (dashed curve). I gives the radiant power per constant wavelength interval in arbitrary units. Excitation with 254 nm radiation.

phonons. The far infrared spectra support this. Table VI summarizes the frequencies of the main emission line and its shoulders or side band in cm^{-1} , as they are found at 77°K.

The far infrared spectra show frequencies corresponding to the fine structure. In Sr the strongest absorptions are found at 90, 480, and 650 cm⁻¹, closely fitting the shoulders at 19.920, 19.570, and 19.380 cm⁻¹. The complicated spectrum of Ba shows a defined band at approximately 300 cm⁻¹, corresponding to the side band at 19.720 cm⁻¹.

Acknowledgments

The author gratefully acknowledges fruitful discussions with Mr. Sommerdijk, Mr. Van Gorkom, and Mr. Seuter. Thanks are due also to Mr. J. G. Verlijsdonk, who prepared the samples, and to Dr A. Bril, Mr. J. H. Haanstra, and Mr. C. Bakker for the measurements.

References

- F. A. KRöGER, "Some aspects of the luminescence of solids," Elsevier, New York (1948).
- 2. J. J. BROWN, J. Electrochem. Soc. 114, 245 (1967).
- 3. W. L. WANMAKER, J. W. TER VRUGT, AND J. G. VERLIJSDONK, *Philips Res. Repts* 25, 108 (1970).
- 4. A. BRIL AND W. L. WANMAKER, J. Electrochem. Soc. 111, 1363 (1964).
- 5. P. B. BRAUN, Philips Res. Repts 12, 491 (1957).
- W. D. TOWNES, J. H. FANG, AND A. J. PERROTTA, Z. für Kristallographie 125, 437–449 (1967).
- V. ADELSKJÖLD, Ark. Kem. Mineralog. Ged. Ser. A12 29, 1–9 (1938).

- K. KATO AND H. SAALFLED, Neues Jahrbuch Mineral. Abh. 109, 192 (1968).
- 9. D. T. PALUMBO, J. Electrochem. Soc. 117, 1184 (1970).
- 10. D. W. LANGER AND S. IBUKI, *Phys. Rev.* 138, A809 (1965).
- D. W. LANGER AND H. J. RICHTER, Phys. Rev. 146, 554 (1966).
- 12. W. E. HAGSTON, Proc. Phys. Soc. 92, 1096 (1967).
- 13. G. F. J. GARLICK, "Luminescent materials," Oxford U. P., London (1949).
- 14. TH. P. J. BOTDEN, Philips Res. Repts 6, 425 (1951).
- 15. J. M. P. J. VERSTEGEN, to be published.